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Abstract
An edge-based smoothed finite element method (ES-FEM) was recently proposed to
significantly improve the accuracy and convergence rate of the standard finite element method
for static, free and forced vibration analyses of solids using three-node triangular elements that
can be generated automatically for complicated geometries. In this work, it is further extended
to static and eigenvalue analyses of two-dimensional piezoelectric structures. In the present
ES-FEM, the approximation of the displacement and electric potential fields is the same as in
the standard linear FEM, while mechanical strains and electric fields are smoothed over the
smoothing domains associated with the edges of the triangles. The system stiffness matrix is
then computed via a simple summation over these smoothed domains. The results of several
numerical examples show that: (1) the ES-FEM is in a good agreement with the analytical
solutions as well as experimental ones and (2) the ES-FEM is much more accurate than the
linear triangular elements (T3) and often found to be even more accurate than the FEM using
quadrilateral elements (Q4) when the same sets of nodes are used.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Piezoelectric materials have been widely used in various
applications such as automotive sensors, actuators, transducers
and active damping devices. One of the essential features of
piezoelectric materials is the ability of transformation between
mechanical energy and electric energy. Due to this attractive
feature, piezoelectric materials are often used to design smart
structures in industrial, medical, military and scientific areas.
Because of limitations of the analytical solutions for solving
practical problems of complicated geometry, the finite element
method (FEM) has become the most popular numerical tool
for analyzing and designing piezoelectric structures, see the
literature survey in [1]. Inheriting the work of Allik and

4 Author to whom any correspondence should be addressed.

Hughes [2] for piezoelectric analysis using the FEM, most of
the finite element models use only displacement and electric
potentials which satisfy fully the compatibility conditions.
However, these elements are often found to be less accurate
and sensitive to a distortion mesh due to the overestimation
of the stiffness matrix. To avoid these drawbacks, many
finite element models have been proposed to improve the
standard finite elements such as the bubble/incompatible
displacement method [3], mixed and hybrid formulations [4–9]
and development of the piezoelectric finite element with
drilling degrees of freedom [10–13]. Several meshless methods
have also been used to analyze piezoelectric structures such
as the meshless point collocation method (PCM) [14], the
point interpolation method (PIM) [15] and the radial point
interpolation method (RPIM) [16].
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Figure 1. Division of domain into triangular element and smoothing cells �(k) connected to edge k of triangular elements.

On the other front in the development of numerical
methods, Liu et al [17–19] have formulated a cell/element-
based smoothed finite element method (CS-FEM or SFEM) for
2D elasticity by combining a strain smoothing technique [20]
with the standard finite element method. The CS-FEM has
also been developed for general n-sided polygonal elements
(nCS-FEM or nSFEM) [21], dynamic analyses [22] and further
extended for plate and shell analyses [23, 24] and piezoelectric
structures [25]. Based on the idea of CS-FEM, a node-based
smoothed finite element method (NS-FEM) [26] for 2D solid
mechanics problems has been developed. In the NS-FEM,
the elements used can be triangles or n-sided polygons and
a simple average interpolation technique is used to create
the shape functions or the assumed displacement field [21].
The stiffness matrix is computed using smoothed strains over
smoothing domains associated with field nodes.

It was shown that NS-FEM works well for locking
problems and achieves a much more accurate stress solution
when triangular elements are used. Furthermore, NS-FEM
can provide an upper bound [26] to the exact solution in the
strain energy for elasticity problems with non-zero external
forces. However, it is also observed that NS-FEM can lead
to spurious non-zero energy modes for dynamic problems.
This shortcoming is due to the ‘overly-soft’ behavior that is
in contrast to the ‘overly-stiff’ phenomenon of the compatible
FEM (T3). To overcome this problem, an edge-based
smoothed finite element method (ES-FEM) [27] has been
recently developed for static, free and forced vibration analyses
in 2D solid mechanics problems. The ES-FEM uses triangular
elements that can be generated automatically for complicated
domains and be applied widely to practical problems. In
the ES-FEM, the system stiffness matrix is computed using
strains smoothed over the smoothing domains associated with
the edges of the triangles. For triangular elements, the
smoothing domain �(k) associated with the edge k is created
by connecting two end points of the edge to the centroids
of the adjacent elements as shown in figure 1. It has been
demonstrated in [27] that the ES-FEM using triangular meshes
is always stable, efficient and often found to be even more

accurate than the standard FEM using quadrilateral elements
(Q4) without adding any additional degrees of freedom. The
ES-FEM has also been extended to the so-called face-based
finite element method (FS-FEM) [28] for solving 3D linear and
nonlinear solid mechanics problems.

This paper further extends the ES-FEM to static and
frequency analyses of piezoelectric structures. Three-node
triangular elements with only linear shape functions are used
and the problem domain is subdivided into the union of
smoothing domains associated with the edges of triangles.
Smoothed strains and smoothed electrics are obtained by
applying the gradient smoothing technique over the edge-
based smoothing domains. Because the ES-FEM uses the
linear shape functions and the constant smoothing operation,
the computation of the stiffness matrix becomes a simple
summation over these smoothing domains. Some numerical
examples are analyzed to demonstrate the accuracy, stability
and effectiveness of the ES-FEM by comparing with the
results of the standard FEM, the analytical solutions as well
as experimental ones.

2. The Galerkin weak form and finite element
formulation for the piezoelectric problem

In this section, a finite element formulation for piezoelectricity
is established via a variational formulation [1, 2]. Consider
a piezoelectric solid occupying a two-dimensional space with
domain � bounded by �; the following general energy
functional L is used to express a summation of kinetic energy,
strain energy, dielectric energy and external work:

L =
∫

�

[
1
2ρu̇Tu̇ − 1

2 STT + 1
2 DTE + uTfs − φqs

]
d�

+
∑

uTFp −
∑

φQp (1)

where u and u̇ are the vectors of mechanical displacement and
mechanical velocity; φ denotes the electric potential vector; T
and S are the stress and strain vectors; D and E are dielectric
displacement and electric field vectors; fs and Fp denote the
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vectors of the mechanical surface loads and point loads; and qs

and Qp denote the vectors of surface charges and point charges.
For the linear electroelastic problem, the constitutive

equations have the following form:
[

T
D

]
=

[
cE −eT

e εS

] [
S
E

]
(2)

where cE denotes the elastic matrix measured at constant
electric field, εS is the dielectric matrix at constant mechanical
strain and e is the piezoelectric matrix.

The strain–displacement and electric field–potential
relationships are expressed by

S = ∇su (3)

E = −grad φ (4)

where ∇s is the symmetric gradient operator:

∇s =
[ ∂

∂x 0 ∂
∂y

0 ∂
∂y

∂
∂x

]T

. (5)

To obtain approximate solutions for piezoelectricity, the
standard three-node triangular element (T3) is used. The finite
element approximation is expressed as

u(x) =
np∑

I=1

[
NI (x) 0

0 NI (x)

]
dI , φ(x) =

np∑
I=1

NI (x)φI

(6)
where np is the total number of nodes in the problem domains,
dI = [uI vI ] T are the nodal degrees of freedom of
u = [ u v ]T associated with node I and NI (x) is the
linear shape functions of triangular elements. Substituting the
approximations (6) into equations (3) and (4), we obtain

S = ∇su =
np∑

I=1

BuI dI (7)

E = −grad φ = −
np∑

I=1

Bφ I φI (8)

where

BuI =
[ NI,x 0

0 NI,y

NI,y NI,x

]
, Bφ I =

[
NI,x

NI,y

]
. (9)

By taking Hamilton’s variational principle:

δ

∫ t2

t1

L dt = 0 (10)

and then substituting equations (6)–(8) into (10), we have a set
of piezoelectric dynamic equations:

[
m 0
0 0

]{
d̈
Φ̈

}
+

[
kuu kuφ

kT
uφ kφφ

]{
d
Φ

}
=

{
F
Q

}
(11)

where

m =
∫

�

ρNT
u Nu d� (12)

kuu =
∫

�

BT
u cEBu d� (13)

kuφ =
∫

�

BT
u eTBφ d� (14)

kφφ = −
∫

�

BT
φεSBφ d� (15)

F =
∫

�

NT
u fs d� + NT

u Fp (16)

Q = −
∫

�

NT
φqs d� − NT

φQp. (17)

Note that equations (12)–(15) are used only for plane
stress/strain problems. For axisymmetric problems, these
derivatives shall have the following form:

BuI =

⎡
⎢⎢⎣

NI,r 0
NI
r 0

0 NI,z

NI,z NI,r

⎤
⎥⎥⎦ , Bφ I =

⎡
⎣

NI,r
NI
r

NI,z

⎤
⎦ . (18)

3. An edge-based smoothed finite element method for
the piezoelectric problem

The above equations are the basic form for analyses of
piezoelectric solids using the standard FEM. Similar to the
FEM, the ES-FEM also uses a mesh of elements. When three-
node triangular elements are used, the shape functions used in
the ES-FEM are also identical to those in the FEM and hence
the displacement field in the ES-FEM is also ensured to be
continuous on the whole problem domain.

3.1. A smoothing operator on mechanical strains and electric
field

In the ES-FEM, we do not use the compatible strain fields (3)
but strains ‘smoothed’ over local smoothing domains, and
naturally the integration for the stiffness matrix K is no longer
based on elements, but on these smoothing domains. These
local smoothing domains are constructed based on edges of
the elements such that � = ∪Ne

k=1�
(k) and �(i) ∩ �( j) = ∅ for

i �= j , in which Ne is the total number of edges of all elements
in the entire problem domain. For triangular elements, the
smoothing domain �(k) associated with the edge k is created by
connecting two end points of the edge to centroids of adjacent
elements as shown in figure 1.

Using the edge-based smoothing domains, smoothed
strains and smoothed electric fields over a smoothing domain
�(k) associated with edge k are constructed by smoothing the
compatible strains and electric fields as

S̃ =
∫

�(k)

S(x)�(k)(x) d� (19)

Ẽ =
∫

�(k)

E(x)�(k)(x) d� (20)

3
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where �(k)(x) is simply chosen to be a step function:

�(k)(x) =
{

1/A(k) x ∈ �(k)

0 x /∈ �(k)
(21)

where A(k) is the area of the smoothing domain �(k):

A(k) =
∫

�(k)

d� = 1
3

N (k)
e∑

j=1

A( j)
e (22)

where N (k)
e is the total number of elements around the edge

k (N (k)
e = 1 for the boundary edges and N (k)

e = 2 for the
inner edges as shown in figure 1) and A( j)

e is the area of the j th
element sharing edge k.

Substituting equation (21) into equations (19) and (20)
and applying the divergence theorem, the smoothed strains and
smoothed electric fields become

S̃ = 1

A(k)

∫
�(k)

S(x) d� = 1

A(k)

∫
�(k)

∇su(x) d�

= 1

A(k)

∫
�(k)

n(k)
u (x)u(x) d� (23)

Ẽ = 1

A(k)

∫
�(k)

E(x) d� = − 1

A(k)

∫
�(k)

grad φ(x) d�

= − 1

A(k)

∫
�(k)

n(k)
φ (x)φ(x) d� (24)

where �(k) is the boundary of the smoothing domain �(k), and
n(k)

u and n(k)
φ are the outward normal matrices on the boundary

�(k) defined by

n(k)
u (x) =

⎡
⎣ n(k)

x 0
0 n(k)

y

n(k)
y n(k)

x

⎤
⎦ , n(k)

φ (x) = [ n(k)
x n(k)

y ]T .

(25)
Therefore the vectors of mechanical stresses and dielectric

displacements can be modified to the following formulation:
[

T̃
D̃

]
=

[
cE −eT

e εS

] [
S̃
Ẽ

]
. (26)

3.2. Smoothed stiffness matrices for piezoelectricity problems

We now introduce two simple ways to compute smoothed
matrices in the ES-FEM. By substituting equation (6) into
equations (21)–(23), the smoothed strain and the smoothed
electric field on the domain �(k) sharing edge k can be written
in the following matrix form of nodal variables:

S̃ = 1

A(k)

∫
�(k)

∇su(x) d� =
∑

I∈N (k)
n

B̃(k)
uI (xk)dI (27)

Ẽ = − 1

A(k)

∫
�(k)

grad φ(x) d� = −
∑

I∈N (k)
n

B̃(k)

φ I (xk)φI (28)

where N (k)
n is the set of nodes of the elements having the

common edge k (for example, N (k)
n = {A, B, C} for boundary

edge m and N (k)
n = {D, E, F, G} for inner edge k as shown

in figure 1); B̃(k)

uI (xk) and B̃(k)

φ I (xk) are termed the smoothed

strain and electric matrices on the smoothing domain �(k) for
plane stress/strain problems, and calculated explicitly by an
assembly process similar to that in the FEM:

B̃(k)
uI (xk) = 1

A(k)

N (k)
e∑

j=1

1

3
Ae

j Bu j ,

B̃(k)
φ I (xk) = 1

A(k)

N (k)
e∑

j=1

1

3
Ae

j Bφ j

(29)

where Bu j , Bφ j are the constant strain gradient matrices of the
j th element around the edge k when the triangular elements
with linear shape functions are used. Note that the matrices
in equations (29) are directly constructed from the area and
the usual ‘compatible’ strain matrices of the standard FEM
using triangular elements. However, these formulations are
only suitable for approximations with the constant compatible
strain matrices such as three-node triangular elements for 2D
problems and four-node tetrahedral elements for 3D problems.
Therefore, to obtain a general way that can work well for n-
sided polygonal elements, the smoothed strains and smoothed
electric fields should now be computed along the boundary of
the smoothing domains (cf equations (23) and (24)) as

S̃ = 1

A(k)

∫
�(k)

n(k)
u u(x) d� =

∑
I∈N (k)

n

B̃(k)
uI (xk)dI (30)

Ẽ = − 1

A(k)

∫
�(k)

grad φ(x) d� = −
∑

I∈N (k)
n

B̃(k)
φ (xk)φI (31)

where B̃(k)

uI and B̃(k)

φ I are computed by the following
formulations:

B̃(k)
uI = 1

A(k)

⎡
⎣

∫
�(k) NI (x)n(k)

x d� 0
0

∫
�(k) NI (x)n(k)

y d�∫
�(k) NI (x)n(k)

y d�
∫
�(k) NI (x)n(k)

x d�

⎤
⎦ (32)

B̃(k)
φ I = 1

A(k)

[ ∫
�(k) NI (x)n(k)

x d�∫
�(k) NI (x)n(k)

y d�

]
. (33)

Next, let the boundary �(k) of an arbitrary smoothing
domain �(k) be the sum of the boundary segments �

(k)

b ,
�(k) = ∪nb

b=1�
(k)
b , where nb is the total number of the boundary

segments of �(k) , for example nb = 3 (AB, BI, IA) for
boundary edge m and nb = 4 (FO, OD, DH, HF) for inner
edge k as shown in figure 1. Using the linear shape function
of triangles as in the FEM, the displacement field in the ES-
FEM is linear compatible along the boundary �(k). Therefore,
one Gaussian point is sufficient for the accurate line integration
along each segment of boundary �

(k)

b of �(k) . Hence the above
equation can be further simplified to its algebraic form:

B̃(k)
uI = 1

A(k)

⎡
⎣

∫
�(k) NI nx d� 0

0
∫
�(k) NI ny d�∫

�(k) NI ny d�
∫
�(k) NI nx d�

⎤
⎦

= 1

A(k)

nb∑
b=1

⎡
⎣ NI (xG

b )n(k)
x (xG

b ) 0
0 NI (xG

b )n(k)
y (xG

b )

NI (xG
b )n(k)

y (xG
b ) NI (xG

b )n(k)
x (xG

b )

⎤
⎦ l(k)

b (34)

4
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B̃(k)
φ I = 1

A(k)

[ ∫
�(k) NI nx d�∫
�(k) NI ny d�

]

= 1

A(k)

nb∑
b=1

[
NI (xG

b )n(k)
x (xG

b )

NI (xG
b )n(k)

y (xG
b )

]
l(k)
b (35)

where xG
b and l(k)

b are the midpoint (Gauss point) and the length
of �

(k)

b , respectively.
Equations (34) and (35) imply that no derivative of shape

functions is used in computing the gradients and only FEM
shape function values at some particular points along the
segments of the smoothing domain boundary are required.

For axisymmetric problems, the smoothed strain and
electric matrices are computed as

B̃(k)

uI

=

⎡
⎢⎢⎣

1
A(k)

∫
�(k) NI (x)n(k)

r (x) d� 0
NI (x)

r 0
0 1

A(k)

∫
�(k) NI (x)n(k)

z (x) d�
1

A(k)

∫
�(k) NI (x)n(k)

r (x) d� 1
A(k)

∫
�(k) NI (x)n(k)

r (x) d�

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1
A(k)

∑nb
b=1 NI (xG

b )n(k)
r (xG

b )l(k)
b

1
r (k)

∑nb
b=1 NI (xG

b )

nb
0

1
A(k)

∑nb
b=1 NI (xG

b )n(k)
z (xG

b )l(k)
b

0
0

1
A(k)

∑nb
b=1 NI (xG

b )n(k)
z (xG

b )l(k)

b
1

A(k)

∑nb
b=1 NI (xG

b )n(k)
r (xG

b )l(k)
b

⎤
⎥⎥⎦ (36)

B̃(k)

φ I =
⎡
⎣

1
A(k)

∫
�(k) NI (x)n(k)

r (x) d�
NI (x)

r
1

A(k)

∫
�(k) NI (x)n(k)

z (x) d�

⎤
⎦

=
⎡
⎣

1
A(k)

∑nb
b=1 NI (x

(k)
b )n(k)

r (x(k)
b )l(k)

b

1
r (k)

∑nb
b=1 NI (x

(k)
b )

nb
1

A(k)

∑nb
b=1 NI (x

(k)
b )n(k)

z (x(k)
b )l(k)

b

⎤
⎦ (37)

where r (k) is determined at the midpoint of edge k.
A linear equations system is then obtained:

[
m 0
0 0

]{
d̈
Φ̈

}
+

[
k̃uu k̃uφ

k̃T
uφ k̃φφ

]{
d
Φ

}
=

{
F
Q

}
(38)

where

k̃uu =
∑
k∈Ne

∫
�(k)

(B̃(k)
u )TcE B̃(k)

u d�

=
∑
k∈Ne

(B̃(k)
u )TcE B̃(k)

u A(k) (39)

k̃uφ =
∑
k∈Ne

∫
�(k)

(B̃(k)
u )TeTB̃(k)

φ d�

=
∑
k∈Ne

(B̃(k)
u )TeTB̃(k)

φ A(k) (40)

k̃φφ = −
∑
k∈Ne

∫
�(k)

(B̃(k)
φ )TεSB̃(k)

φ d�

= −
∑
k∈Ne

(B̃(k)
φ )TεSB̃(k)

φ A(k). (41)

Equations (39)–(41) give a simple way to compute the
stiffness matrices of smoothing domains associated with edges
of the elements. Finally, we note that the trial functions u(x),
φ(x) are the same as those given in equation (6), and therefore
the force vector F, Q and mass matrix m in the ES-FEM are
also calculated in the same way as in the FEM. In other words,
the ES-FEM changes only the stiffness matrix.

4. Numerical results

In this section, benchmark problems are examined for the
piezoelectric ES-FEM. For comparison, the elements used in
this paper are denoted as follows:

• Q4—the standard four-node quadrilateral element using
2 × 2 Gauss points (FEM-Q4).

• T3—the standard three-node element with shape linear
function (FEM-T3).

• ES-T3—the edge-based SFEM [27] that is found to be
the ‘most’ accurate model using triangular elements (ES-
FEM-T3) so far.

The PVDF, PZT4 and PZT5 materials are used and their
features are referred to by

• PZT4 [9]

c11 = 139 × 103, c33 = 113 × 103,

c13 = 74.3 × 103, c55 = 25.6 × 103 (N mm−2)

e15 = 13.44 × 106, e31 = −6.98 × 106,

e33 = 13.84 × 106 (pC mm−2)

ε11 = 6.00×109, ε33 = 5.47×109 (pC GV−1 mm−1)

• PVDF [14]

c11 = 2.18 × 10−3, c13 = 6.33 × 10−4,

c33 = 2.18 × 10−3, c55 = 7.75 × 10−4 (N μm−2)

e31 = e33 = 4.6 × 10−8 (N V−1 μm−1)

ε11 = ε33 = 1.062 × 10−10 (N V−2)

• PZT5 [14]

s11 = 16.4 × 10−6, s13 = −7.22 × 10−6,

s33 = 18.8 × 10−6, s55 = 47.5 × 10−6 (mm2 N−1)

d31 = −172 × 10−9, d33 = 374 × 10−9,

d15 = 584 × 10−9 (mm V−1)

∈11= 1.531 05×10−8, ∈33= 1.505×10−7 (N V−2).

5
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Table 1. The results of patch test.

Results

Variable Exact ES-T3

u 2.376 547 556 249 814 × 10−6 2.376 547 556 249 648 × 10−6

v −1.818 789 953 339 896 × 10−7 −1.818 789 953 339 893 × 10−7

φ −1.066 703 050 081 747 × 10−9 −1.066 703 050 081 748 × 10−9

Txx 1.0 1.0
Tyy 0 −3.760 880 495 917 718 × 10−15

Txy 0 −1.292 368 989 602 721 × 10−16

Dx 0 −6.039 613 253 960 852 × 10−14

Dy 0 3.659 295 089 164 516 × 10−13

4(0.2;0.12)

5(0.3;0.06)

2(0.44;0)

3(0.44;0.12)

1(0.2;0)

Figure 2. Patch test of piezoelectric elements.

The constant matrices cE , e and εS are used for the
following cases:

- Plane problems:

[
cE −eT

e εS

]
=

⎡
⎢⎢⎢⎣

c11 c13 0 0 −e31

c13 c33 0 0 −e33

0 0 c55 −e15 0
0 0 e15 ε11 0

e31 e33 0 0 ε33

⎤
⎥⎥⎥⎦ .

(42)
- Axisymmetric problems:

[
cE −eT

e εS

]
=

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 −e31

c12 c11 c13 0 0 −e31

c13 c13 c33 0 0 −e33

0 0 0 c44 −e24 0
0 0 0 e24 ε22 0

e31 e31 e33 0 0 ε33

⎤
⎥⎥⎥⎥⎥⎦

.

(43)

The following relations [9] are more convenient to
evaluate analytical and numerical solutions:

[ s11 s13 g31

s13 s33 g33

g31 g33 − f33

]
=

[ c11 c13 e31

c13 c33 e33

e31 e33 −ε33

]−1

(44)

and

d = ec−1
E , εT =

[∈11 0
0 ∈33

]
,

εS = εT − ec−1
E eT.

(45)

4.1. Eigenvalues and rank

ES-T3 only contains four zero eigenvalues including the
three rigid-body modes of the mechanical part and one zero
eigenvalue of the constant potential field. Hence this element
always has sufficient rank and no spurious zero-energy modes.

4.2. Patch test

Satisfaction of the patch test requires that a constant
distribution of all quantities is reproduced for arbitrary meshes.
For the piezoelectric problem, we base it on work of Sze et al
[9] with geometry and mesh shown in figure 2. The PZT4
material is used to test this problem.

The boundary condition for mechanical displacement and
electric potential is assumed to be

u = s11σ0x, v = s13σ0 y, φ = g31σ0 y (46)

where σ0 is an arbitrary stress parameter. Hence, the
mechanical stresses and the dielectric displacements have the
following form:

Txx = σ0, Txy = Tyy = Dx = Dy = 0. (47)

It is found from table 1 that all results of the ES-T3 match
the exact solution within machine precision.

4.3. Singer-player piezoelectric strip

This example is to examine the accuracy of the present element
under mechanical action and electric potential boundary
conditions. This problem was studied previously by Ohs et al
[14] for the performance of the meshless point collocation
method. We consider the shear deformation of a 1 mm ×
1 mm piezoelectric strip under the compressive stress σ0 =
5 N mm−2 and an applied voltage V0 = 1000 V, see figure 3.
The material PZT-5 is used for this problem. The electric
field is applied to the left and right edges in order to create
the polarization of the material, resulting in shear strain. The
mechanical and electrical boundary conditions are prescribed

6



Smart Mater. Struct. 18 (2009) 065015 H Nguyen-Xuan et al

Figure 3. Piezo-strip under a uniform stress and an applied voltage.

Figure 4. Variation of horizontal displacement u at the central line
(y = 0) of the singer-player piezoelectric strip.

to the edges of the strip:

φ,y(x, y = ±h) = 0, Tyy(x, y = ±h) = σ0,

Txy(x = L, y) = 0 Txy(x, y = ±h) = 0,

φ(x = L, y) = −V0, Txx (x = L, y) = 0

φ(x = 0, y) = +V0, u(x = 0, y) = 0,

v(x = 0, y = 0) = 0.

(48)

The analytical solution for this problem is given by Ohs
et al [14]:

u = s13σ0x, v = d15V0x

h
+ s33σ0 y,

φ = V0

(
1 − 2

x

L

)
.

(49)

The calculated results are depicted in figures 4–6. It is seen
that the results of the ES-T3 element match the exact solutions.
This also means that the ES-T3 element can reproduce the
linear behavior of the analytical solution.

Figure 5. Variation of vertical displacement v at the central line
(y = 0) of the singer-player piezoelectric strip.
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Figure 6. Variation of electric potential φ at the central line (y = 0)
of the singer-player piezoelectric strip.

Figure 7. Cook’s membrane.

4.4. Cook’s membrane

This benchmark problem, shown in figure 7, refers to a
clamped tapered panel subjected to a distributed tip load,

7
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Figure 8. Convergence of vertical displacement at point A of Cook’s
membrane.

Figure 9. Convergence of electric potential at point A of Cook’s
membrane.

resulting in deformation dominated by a bending response.
The PZT4 material is used. The mechanical boundary
conditions are similar to the popular Cook’s membrane [29].
The boundary condition of the lower surface is prescribed by
zero voltage (0 V). The analytical solution of the problem is
unknown. The reference value of the vertical displacement and
the electric potential at the center tip (A) is 2.109 × 10−4 mm
and 1.732 × 10−8 GV [13].

The convergence of the vertical displacement at point A
is illustrated in figure 8. It is shown that the ES-T3
element achieves the best prediction for vertical displacement
at point A. Figure 9 presents results of the electric potential at
point A. It is clear that the ES-T3 element is superior to the T3
and Q4 elements.

Now we mention the computational efficiency of the
present method compared with FEM models. The program
is compiled by a personal computer with Intel(R) Core (TM)
2 Duo CPU—2 GHz and RAM—2 GB. The computational
cost is to set up the global stiffness matrix and to solve
the algebraic equations. Owing to the establishment of the
smoothed strain (27) and the smoothed electric field (28), no

E
rr

or
 in
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is

pl
ac

em
en

t

Figure 10. Comparison of the computational efficiency in
displacement error of Cook’s membrane.

Figure 11. Comparison of the computational efficiency in electric
potential error of Cook’s membrane.

additional degrees of freedom are required in the ES-FEM.
Figures 10 and 11 illustrate the errors in vertical displacement
and electric potential at point A against the CPU time (seconds)
for Cook’s membrane problem. It is observed that the ‘over-
head’ computation time of the ES-T3 is little longer than those
of the Q4 and the T3, due to the additional time required for the
additional operations related to the stiffness matrix. However,
in terms of the computational efficiency (computation time for
the same accuracy) measured in both displacement and electric
potential errors, the ES-T3 is the more effective. More details
for the convenience of ES-T3 can be found in the previous
work in [27].

4.5. MEMs device

The purpose of this problem is to simulate the linear tilt angle
of the reflected light through a mirror of an MEMs device.
The device is constructed from two parallel bimorphs made of

8
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Figure 12. Bimorph MEMs device.

Figure 13. Parallel bimorph geometry.

PVDF material connected by a mirror as shown in figure 12.
Each bimorph with length L = 10 μm and height H = 1 μm
is assumed. The bimorph beam is divided into top and bottom
layers as shown in figure 13.

The following boundary conditions are applied to layer 1
of the bimorph beam:

φ(1)(x, y = 0) = V , T (1)
yy (x, y = 0) = 0,

T (1)
xy (x, y = 0) = 0

φ(1)(x, y = h) = 0, T (1)
yy (x, y = h) = T (2)

yy (x, y = h)

T (1)
xy (x, y = h) = T (2)

xy (x, y = h)

φ(1)
,x (x = 0, y) = 0, u(1)(x = 0, y) = 0,

v(1)(x = 0, y) = 0

φ(1)
,x (x = L, y) = 0, T (1)

xx (x = L, y) = 0,

T (1)
xy (x = L, y) = 0.

(50)
Boundary conditions for layer 2 were

φ(2)(x, y = h) = φ(1)(x, y = h),

u(2)(x, y = h) = u(1)(x, y = h)

v(2)(x, y = h) = v(1)(x, y = h),

φ(2)(x, y = 2h) = V

T (2)
yy (x, y = 2h) = 0, T (2)

xy (x, y = 2h) = 0

φ(2)
,x (x = 0, y) = 0, u(2)(x = 0, y) = 0,

v(2)(x = 0, y) = 0 φ(2)
,x (x = L, y) = 0,

T (2)
xx (x = L, y) = 0, T (2)

xy (x = L, y) = 0.

(51)

The centers of bimorphs are connected by a 1 μm long
mirror. Linear elastic is assumed to the mirror. When a

Table 2. Tip deflections (μm).

Applied
voltage (V) T3 Q4 ES-T3 Ref [14]

1.00 0.004 794 0.004 866 0.004 808 0.004 936
2.00 0.009 588 0.009 731 0.009 614 0.009 872
5.00 0.023 971 0.024 328 0.024 034 0.024 681

10.00 0.047 942 0.048 655 0.048 068 0.049 362
15.00 0.071 913 0.072 983 0.072 102 0.074 043
20.00 0.095 884 0.097 310 0.096 136 0.098 724
25.00 0.119 855 0.121 638 0.120 169 0.123 405
50.00 0.239 710 0.243 276 0.241 339 0.246 811

voltage is applied, the bimorphs vertically displace in opposite
directions and rotate the mirror with the tilt angle. As a result,
the direction of the reflected light can change when the various
voltages are applied.

Note that the analytical solution of this problem is not
available. Therefore, similar to the analysis given in [14], a
mesh (80 × 20) of 1701 nodes is used. The tip displacements
of the bimorphs using the FEM and ES-FEM are computed
for several voltages. From the tip displacement, the tilt angle
of the mirror is found and compared to the reference result
in [14]. The tilt angle of the mirror could be calculated by
normal deflection of the beam at the point connection between
mirror and beam in which the horizontal displacement of this
point is supposed to be zero.

The results of the T3, Q4 and ES-T3 are given in table 2.
The tilt angle is described in figure 14. Similar to the meshless
point collocation method (PCM) [14], it is also found that the
tip displacements of the bimorphs and the tilt angle of the
mirror for both FEM and ES-FEM models vary linearly with
applied voltages.

Note that the displacement of the ES-T3 is larger than
that of the T3 because the model of the ES-T3 is softer than
that of the T3 element. However, for this problem, ES-T3
solutions are slightly stiffer than those of Q4 and the meshless
point collocation method (PCM). This can be due to the shear

9
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Figure 14. Tilt angle of mirror in the bimorph MEMs device.

Table 3. Eigenvalues (kHz) using 175 nodes (272 triangular
elements).

Element
type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

T3 19.98
(7.42%)

43.31
(24.01%)

62.78
(15.83%)

67.78
(7.08%)

94.23
(6.12%)

Q4 19.7
(5.91%)

42.9
(21.19%)

61.1
(12.73%)

66.7
(5.37%)

92.2
(3.83%)

ES-T3 18.74
(0.75%)

41.74
(17.91%)

59.21
(9.24%)

65.23
(3.05%)

89.85
(1.18%)

Experi-
mental [31]

18.6 35.4 54.2 63.3 88.8

effect generated from the present element when it is used to
model thin bimorph beams [14]. Therefore, a finer mesh or an
interpolation function of higher-order approximation is more
appropriate to provide the same accuracy as the PCM.

4.6. Eigenvalue analysis of a piezoelectric transducer

This example performs an eigenvalue analysis of a cylindrical
transducer using a piezoelectric material PZT4 wall with
brass end caps as shown in figure 15. On inner and outer
surfaces of the structure, the electrode is imposed. This
illustration is a typical problem given in section 6.1.1 in the
ABAQUS manual [30]. This problem is also identical to
the one resulting experimentally in Mercer et al [31]. The
transducer is modeled as an axisymmetric problem and the
discretization with quadrilateral and triangular elements is
illustrated by figure 16. Homogeneous constraints of the
potentials on the inside surface are restrained. The frequencies
correspond to those for anti-resonance. The ES-FEM approach
is now applied to analyze the eigenvalues of the transducer.
For comparison, we use uniform meshes of 136 rectangular
elements (272 triangles) as shown in figure 16. Table 3 shows
the first five frequencies, and the relative error percentages
compared with experimental results are given in parentheses.
Their corresponding eigenmode shapes are plotted in figure 17.

Figure 15. Schematic presentation of a transducer.

Figure 16. Domain discretization of the transducer using 136
rectangular elements (272 triangles).

It can be seen that these eigenmode shapes are identical to those
described in the ABAQUS manual [30].

From table 3, it is observed that the ES-T3 gives a good
agreement with the experimental results from Mercer et al
[31]. The relative error percentage corresponding to each mode
of ES-T3 is smaller than that of T3 and Q4 elements. This
means that the eigenvalues of the ES-T3 are better than those
of standard finite elements.

5. Conclusions

An edge-based smoothed finite element method using a
triangular mesh for analyses of two-dimensional piezoelectric

10
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Figure 17. Eigenmodes for the piezoelectric transducer by the ES-T3.

structures is further studied. In the present method, the
displacements and electric potentials are approximated as in
the standard FEM, but the mechanical strains and the electric
displacements are smoothed over the smoothing domain
associated with the edges of the triangles. As a result, the
coupled stiffness mechanical and electrical matrices based on
these smoothed fields are simply obtained. More importantly,

the ES-FEM only uses triangular meshes with DOF at vertex
nodes and no additional degrees of freedom are required. The
present method passes the patch test for plane piezoelectric
problem. The obtained results of the ES-FEM are in a good
agreement with analytical solution as well as experimental
results. The ES-T3 element is much more reliable and
accurate than the T3 and is often found to be even more

11
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accurate than the Q4 element for tested static problems and
for eigenvalue analysis of the transducer. Furthermore, the ES-
FEM is very easy to implement in a finite element program
using triangular meshes that can be generated with ease for
complicated problem domains.
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